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We illustrate a network approach to the phase-space study by using two geometrical frustration models:
antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as
discrete networks such that the quantitative network analysis can be applied to phase-space studies. The
resulting phase spaces share some comon features and establish a class of complex networks with unique
Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are
still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces
of some other complex systems.

DOI: 10.1103/PhysRevE.80.051102 PACS number�s�: 05.50.�q, 64.60.aq, 75.10.Hk

I. INTRODUCTION

One challenge to understanding disordered solids is the
complex geometry of their phase spaces, including the rela-
tive positions and interconnections between the different
states. Phase spaces are usually too large and complicated to
be directly studied. Here, we propose that some simple mod-
els of disordered solids, such as geometrical frustrated spin
models, provide an ideal platform for phase-space studies.
Geometrically frustrated systems have highly degenerated
ground states with zero-point entropy �1�. Their whole phase
spaces can be mapped as nontrivial complex networks, so
that the recently developed large tool box of network analy-
sis �2–4� can be used to understand phase spaces. On the
other hand, these phase spaces provide a class of complex
networks with unique topologies.

When a system has competing interactions, there is no
way to simultaneously satisfy all interactions: a situation
known as frustration. Frustration widely exists in systems
ranging from neural networks to disordered solids. Frustra-
tion can also arise in an ordered lattice solely from geometric
incompatibility �1�. For example, consider the three antifer-
romagnetic Ising spins on the triangle shown in Fig. 1�A�.
Once two of them are antiparallel to satisfy their antiferro-
magnetic interaction; there is no way that the third one can
be antiparallel to both of the other two spins. Frustration
leads to highly degenerated ground states and, subsequently,
to complex materials with peculiar dynamics such as water
ice �5�, spin ice �6�, frustrated magnets �6�, artificial frus-
trated systems �7�, and soft frustrated materials �8�.

In geometrically frustrated systems, spins on lattices have
discrete degrees of freedom, such that their phase spaces are
discrete and can be viewed as networks. A node in the net-
work corresponds to a state of the system. Two nodes are
connected by an edge �i.e., a link� if the system can directly
evolve from one state to the other without passing through
intermediate states. Edges are undirected because dynamic
processes at the microscopic level are time reversible. The
challenge is how to construct and analyze such large phase-
space networks. For example, how do we identify whether or
not two nodes are connected?

II. ANTIFERROMAGNETS ON TRIANGULAR LATTICES
AND SQUARE ICES

The first model we consider is antiferromagnetic Ising
spins on a two-dimensional �2D� triangular lattice �9�. For a

large system with periodic boundary conditions, it has
�e0.323Nspin degenerated ground states, where Nspin is the
number of spins �9�. For example, configuration 3A in Fig.
1�C� is one ground state in the hexagonal area. We refer to
pairs of neighboring spins in opposite states, as satisfied
bonds, i.e., they satisfy the antiferromagnetic interaction.
Since one triangle has at most two satisfied bonds �see Fig.
1�A��, the ground state should have 1/3 of its bonds frus-
trated and 2/3 of its bonds satisfied �9�. If we plot only sat-
isfied bonds, a ground state can be mapped to a random
lozenge tiling �10� �see configuration 3A in Fig. 1�C��. A
lozenge is a rhombus with 60° angles. By coloring lozenges
with different orientations with different gray scales; the til-
ing can be viewed as a stack of three-dimensional �3D�
cubes, or as a simple cubic crystal surface projected in the
�1� direction �10� �see Fig. 1�C��.

The ground state has a local zero-energy mode, as shown
in Fig. 1�B�: the central particle can flip without changing the
energy since it has three up and three down neighbors. The
system can evolve via a sequence of such single spin flips,
even at zero temperature. We call such a local zero-energy
mode as the basic flip. Any configuration change can be
viewed as a sequence of such basic flips. Recently, we di-
rectly observed such flips in a colloidal monolayer �8�. In the
language of cubes, a basic flip is equivalent to adding or
removing a cube �see Fig. 1�B��. By continuing to add or
remove one cube from the stack surface, we can access all
possible stack configurations in the large box. Thus, the
ground-state phase space is connected at this “hexagonal
boundary condition.” The corresponding cube stacking in a
large box is equivalent to the boxed plane partition problem
in combinatorics �11�. The total number of ways to stack unit
cubes in an L3 box is given by the MacMahon formula �12�,

Nn�L� = �
1�i,j,k�L

i + j + k − 1

i + j + k − 2

=
H3�L�H�3L�

H3�2L�
� �27

16
�3/2L2

when L → � , �1�

where the hyperfactorial function H�L�=�k=0
L−1k!. The first

several Nn�L=2,3 ,4 ,5 , . . .� are 20,980,232848,
267227532, . . . �see the number sequence A008793 in Ref.
�13��. When L=2, all 20 ground-state configurations in Fig.
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1�C� have the same minimum possible energy, i.e., 12 frus-
trated bonds in 12 rhombuses. The 20-node phase-space net-
work in Fig. 1�C� can be constructed based on the following
two facts: �1� spins on lattice have discrete degrees of free-
dom, such that the phase space contains discrete number of
microstate; �2� any configuration change can be decomposed
to a sequence of basic flips. Consequently, we can define an
edge between two nodes if the two states differ by only one
basic flip �i.e., one cube�, such that the system can directly
change from one node to the other without passing through
intermediate nodes. Note that multiple flips will not flip ex-
actly simultaneously because time is continuous.

The ground-state phase-space networks of another frustra-
tion model known as the six-vortex model or square ice
�14–16� can be similarly constructed. The ground state of the
square ice follows the ice rule, i.e., each vertex has two
incoming and two outgoing arrows. Flipping a closed loop of
arrows from clockwise to counterclockwise �or vice versa�
does not break the ice rule. The smallest four-arrow loops are
basic flips since any configuration change can be decom-
posed as a sequence of such flips �15�. Similar to cube stack-
ing, all the legal configurations of square ice under fixed
boundary conditions are connected via basic flips �15�. In
fact, the ground states of square ice have one-to-one corre-
spondence to faced-centered cubic �FCC� stacks of spheres
and different boundary conditions correspond to different
container shapes �16�. The basic flip is equivalent to adding/
removing a sphere �16�. Thus, both triangular antiferromag-
nets and square ice can be mapped to solid-on-solid �SOS�
models: the former corresponds to simple cubic SOS and the
latter corresponds to FCC SOS. The degeneracy of geometri-
cal frustration strongly depends on boundary conditions �17�.
For example, the number of L�L square ices with domain-
wall boundary conditions is �18�

Nn�L� = �
1�i�j�L

L + i + j − 1

2i + j − 1
= �

j=0

L−1
�3j + 1�!
�L + j�!

� �27

16
�L2/2

when L → � , �2�

i.e., the number of nodes of its phase-space network. This is
much smaller than Nn�L���64 /27�L2/2 when L→� under the
periodic boundary condition �14�.

In statistical physics, the two models we studied here are
considered as exactly solvable �19� under periodic boundary
conditions at the infinite-size limit. In contrast, combinatoric
analysis yields exact results about finite systems at some
fixed boundary conditions �e.g., Eqs. �1� and �2��. The two
models have been understood in exquisite detail through
methods as varied as Bethe ansatz, Fermionic path integrals,
field theories, etc., but few quantitative properties about
phase spaces are known. Here we mapped out phase-space
networks under free, periodic, and various fixed boundary
conditions and found that they share some common features.

III. NETWORK PROPERTIES

We numerically studied phase-space networks of small
triangular antiferromagnets and square ices under periodic,
free, and various fixed boundary conditions. The phase space
increases exponentially with the lattice size. Numerically, we
can handle networks only up to 2 068 146 nodes and
13 640 060 edges �4�5 square ice under free boundary con-
ditions�; nevertheless, many general properties have emerged
from such small systems.

The basic property of a network is the connectivity �or
degree� distribution �4�. The connectivity ki is the number of
edges incident with the node i. The connectivities of two
frustrated systems appear to have Gaussian-like distributions
at larger system size �for example, see Fig. 2�. We observed
that this Gaussian behavior persists at other boundary condi-
tions as well. This behavior is similar to that of small-world
networks �4,20� and Poisson random networks �3,4� and dif-
ferent from that of scale-free networks �4,21�. Other network
properties, such as the diameter and the cluster coefficient,
can be readily derived from the cube/sphere stack picture.
For cube stacks, the shortest path length between two nodes

0

1

3A

2A

4A

4

0

1

0 1

2A

2B

2C

3A3A

3B3B

3C3C

4A

4B

4C

4

01

2A

2B

3A3A

3B3B

3C3C 2C

?

- free spin- free spin+ free spin+ free spin

(A)

(B)

(C)

3A

FIG. 1. �Color online� �A� Three antiferromagnetic spins on a
triangle cannot simultaneously satisfy all their interactions. �B� The
central spin has three up and three down neighbors, so that it can
flip freely without energy change. Satisfied bonds can be viewed as
cubes. The + /− free spin flip corresponds to adding/removing a
cube. �C� The 2�2�2 cube stacks are stable against gravity along
the �1� direction. Stack configurations have one-to-one correspon-
dence to Ising ground states under “hexagon boundary condition,”
e.g., see configuration 3A. In the right 3A configuration, the thick
black lines are satisfied bonds forming rhombuses and the thin blue
lines are frustrated bonds. In total, there are 20 legal stacks, i.e., 20
nodes in the phase-space network. The network is bipartite, i.e.,
consisting of alternating red �even number of cubes� and black �odd
number of cubes� states.
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FIG. 2. �Color online� Connectivity distributions of ground-state
phase-space networks. �A� Antiferromagnets on L=4 �circles� and
L=3 �squares� triangular lattices at hexagon boundary conditions.
�b� 7�7 �circles� and 6�6 �squares� square ices at domain-wall
boundary conditions. Insets: semi-log plots. The curves in the main
plots and insets show the best Gaussian fits.

YILONG HAN PHYSICAL REVIEW E 80, 051102 �2009�

051102-2



is simply the number of different sites among all the L3 sites.
The largest distance, i.e., the diameter of the network, is L3

between the “vacant” and the “full” states. Here, we define
the vacant state as no cube �i.e., L3 vacant sites� and the full
state as no vacant site �i.e., L3 cubes�. The networks have
small-world properties �4,20� in the sense that the diameter
L3 is almost logarithmically small compared with the net-
work size �eNspin �eL2

. The network is bipartite �see the
solid and open circles in Fig. 1�A�� because a cube stack
comes back to its initial configuration only by adding and
removing the same number of cubes, i.e., an even number of
basic flips. Consequently, the cluster coefficient �4�, which
characterizes the density of triangles in the network, is 0.

Spectral analysis provides global measures of network
properties. For an Nn-node network, the connectivity �or ad-
jacent� matrix A is an Nn�Nn matrix with Aij =1 if nodes i
and j are connected, and zero otherwise. Since edges in
phase-space networks are undirected, A is symmetric and all
its eigenvalues �i are real. The spectral density of the net-
work is the probability distribution of these Nn eigenvalues

���� =
1

Nn
	
i=1

Nn

��� − �i� . �3�

����’s qth moment Mq is directly related to the network’s
topological feature. Dq=NnMq=	i=1

N ��i�q is the number of
paths �or loops� that return back to the original node after q
steps �4�. In a bipartite network, all closed paths have even
steps so that all odd moments are zero. Consequently, the
spectral density is symmetric and centered at zero. The ith
node with ki neighbors has ki ways to return back after two

steps; hence, the variance �2=M2=	iki /Nn= k̄, where k̄
=2Nedge /Nn is the mean connectivity. We rescale the mea-

sured spectral densities by k̄1/2 to the unit variance �see Fig.
3�. The rescaled spectral densities of different frustration
models collapse onto the same Gaussian distribution.

We show that spectral densities are indeed Gaussian at the
infinite-size limit. The characteristic function, i.e., the Fou-
rier transform of the probability function, uniquely describes
a statistical distribution. It can be written as a series of mo-
ments of the distribution. Hence, to prove that the spectral
density is Gaussian, we only need to show that all orders of
the moments are the same as those of a Gaussian distribu-
tion. For a Gaussian distribution centered at 0, its odd mo-
ments are zero and its even moments �of order q� are Mq

= �q�!
2q/2�q/2�!�

q= �q−1� ! !�q, where �2 is the variance. Here we
count Dq in cube/sphere stacks and show that Mq=Dq /Nn

follows the Gaussian Mq at the infinite-size limit. We count

D2n by considering 2n basic flips f1 , f̄1 , f2 , f̄2 , . . . , fn , f̄ n. Sub-
scripts denote the time order and f i must be earlier than its

reverse flip f̄ i. The 2n basic flips are placed in a 2n-long
sequence in time order. First, f1 must be placed at step 1.

Then, there are 2n−1 choices for placing f̄1. Then, f2 must

be placed at the earliest available step �i.e., step 2 if f̄1 is not

occupying that step�. Then, f̄2 has 2n−3 choices. Thus, in
total, there are �2n−1� ! ! legal sequences. Note that if f i and
f j are flips of the same spin or neighbor spins, some se-
quences are illegal. However, the probability of such illegal
case approaches 0 in infinitely large systems because a finite
number of f i’s are diluted enough to be considered as inde-
pendent. Next, we consider how many choices of f i’s there
are. Given the initial state i, f1 has ki choices, f2 has ki1

choices, . . .fn has ki�n−1� choices. Here, kij is the connectivity
of a node after walking j steps away from the initial node i.
kij depends on the pathway of the j steps and is not a con-
stant. In total, there are � j=0

n−1kij choices. When the system

size is large, kij 
ki
 k̄, where k̄ is the number of free spins
of the mean cube-stack surface. Here we use the fact that
when the system size approaches the infinite-size limit, the
dominant number of states is close to the mean SOS surface,
i.e., the cube/sphere stack surface shape distribution peaks
around this maximum possible surface and becomes like a
Dirac delta distribution �22�. Consequently, the probability
distribution of connectivity approaches a Dirac delta distri-
bution as well. Combining the above results D2n
	i=1

Nn �2n

−1� ! !� j=0
n−1kij 
�2n−1� ! !Nnk̄n, which becomes exact at the

infinite-size limit. Since D2=Nnk̄=Nn�2, the 2nth moment
M2n=D2n /Nn= �2n−1� ! !�2n, which are identical to the 2nth
moment of a Gaussian distribution. Odd orders of moment
are all zero, which is identical to those of a Gaussian distri-
bution centered at zero. Since all moments are identical to
those of a Gaussian distribution, the spectral density of
phase-space networks is Gaussian at the infinite-size limit. In
fact, Fig. 3 shows that spectral densities are already very
close to the Gaussian distribution when systems are not so
large ��103 nodes�.

The Gaussian spectral density distinguishes phase spaces
from other complex networks. For example, the spectral den-
sity of a random network is the semicircle in Fig. 3. The
spectral densities have triangular distributions for scale-free
networks and irregular distributions for small-world, modu-
lar hierarchical, and many real-world networks �23,24�.
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FIG. 3. �Color online� Spectral densities of phase-space net-

works. Variances are rescaled to 1 by ��=� / k̄−1/2. Black curve:
Gaussian distribution e−��2/2 /�2	. Dashed curve: Wigner’s semi-
circle law for random networks. ����=�4�2−�2 / �2	�2� if ���

2� and zero otherwise. The variance �2 is also rescaled to 1.
Open circles: the spectral density of the 980-node network of L
=3 cube stacks. Solid squares: the 7436-node network of 7�7
square ice under the domain-wall boundary condition. Open dia-
monds: 7782-node network of 2�5 square ice under the free
boundary condition. Their Gaussian fits are indistinguishable from
the black curve.
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IV. POISSON PROCESSES AND ERGODICITY
IN PHASE SPACES

Network analysis provides an opportunity to study ergod-
icity. Unlike billiards with deterministic trajectory, we as-
sume that the spin flipping is due to the random thermal
motion and does not depend on history. Thus, the dynamical
evolution of the system can be viewed as a random walk on
its phase-space network. It is still interesting to ask whether
this random walk can uniformly visit each node given the
complex structure in phase space and the complex frustration
constrains in real space.

Random walks on a network are rather chaotic, and nodes
with higher connectivities will be visited more frequently.
Thanks to the theorem in Ref. �25�, the mean visiting fre-
quency for node i is ki /Nedge, which only depends on local
connectivity ki, and does not depend on the global structure
of the network. Here, Nedge is the total number of edges. This
theorem is a direct consequence of the undirectedness of
edges. Although highly connected nodes are visited more
frequently ��ki�, interestingly, the equal-probability postu-
late does not break down because the average time stayed at
node i is �1 /ki. Basic flips are random and independent of
history, meaning that it is a Poisson process. We define the
flipping probability of a basic flip within a unit of time as �,
which is the intensity of the Poisson process. In Poisson
processes, the time interval between flips �i.e., the staying
time� has an exponential distribution e−�t and the mean stay-
ing time is 1 /�. For a node with connectivity k, the superpo-
sition of k Poisson processes is still a Poisson process with
intensity k� and, consequently, the mean staying time is
1 / �k��. For example, the cube-stack configuration 4 in Fig.
1�C� has six free spins, while configuration 0 only has one
free spin; hence, the mean lifetime of configuration 4 is 1/6
of that of configuration 0. A random walker has higher fre-
quency ��k� to visit a high-k node but will stay there for a
shorter time ��1 /k�, so that the equal-probability postulate is
recovered. The above analysis can be easily generalized to
networks with weighted edges �26�. Boltzmann assumed that
molecules shift from one microscopic configuration to the
next in such a way that every possible arrangement is equally
likely, i.e., all edges have the same weight. We found that the
equal-probability postulate still holds if edges have different
weights �16�, which, for example, can represent different po-
tential barriers in complex energy landscapes in phase
spaces.

Note that the flipping dynamics of random tiling has been
studied in Monte Carlo simulations �27,28�. In such discrete
mathematical problems, it is natural not to take the staying
time as Poisson random. Compared with the conventional
random-walk simulations, the theorem of complex network
�25� provides the exact result about visiting frequency for
each node. This is also confirmed by our random-walk simu-
lations. Moreover, conventional dynamic simulations explore
a tiny portion of a huge phase space by random walks, while
we map out the whole phase spaces of small systems so that
exact results can be obtained from quantitative network
analysis.

An ergodic system may be trapped in a small part of its
phase space in a practical time scale. Such weak ergodicity

can be quantitatively measured by the network community
�or modular� analysis. In particular, spectral analysis can de-
tect the network’s community structures �31� if there are any.
The algorithm in Ref. �31� can detect the network’s commu-
nity structures �31� if there are any, and the “strength” of
each community is characterized by a number. We applied
this algorithm �31� and identified some relatively highly con-
nected subnetworks �i.e., communities�. However, we still
observe a number of edges between subnetworks. Simula-
tions also show that the system can easily travel through the
whole phase-space network via basic flips and will not be
trapped in a local community for a long time. Hence, we
consider the phase space as ergodic. Unlike 2D rhombus
tiling, the flipping of 3D rhombus tiling has slowing-down
dynamics due to entropic barriers �29�. Network community
analysis can provide a way to quantify this weak ergodicity
�30�.

V. SUMMARY AND OUTLOOK

We mapped out the whole phase-space networks of small
frustrated systems. From the numerical and theoretical analy-
ses of the two models under different boundary conditions,
we found that their phase-space networks share some univer-
sal features including the small-world property, Gaussian-
like connectivity distributions, Gaussian spectral densities at
the infinite-size limit, and the Poisson dynamics with equal
probability on every node. Phase spaces are ergodic under
free and fixed boundary conditions. Although the numerical
results were obtained from small systems, they guided us to
show that the above features are valid at the infinite-size
limit. Compared with intensively studied social networks,
information networks, biological networks, and technologi-
cal networks �3�, phase-space networks belong to a different
class with unique topology characterized by Gaussian spec-
tral densities.

The connections between geometrical frustration and
complex networks provide new open questions and analysis
tools. A large tool box has been developed since 1998 �20� to
study complex network dynamics, correlations, centrality,
community structures, fractal properties �32�, coarse graining
�33�, etc. �see the recent review paper �4��. These tools can
be readily applied to phase-space studies. For example,
asymmetry in the random dynamic process is characterized
by the potential-like network centrality �25�, which has been
confirmed in our simulation that the visiting frequencies of
different states have a Gaussian-like distribution due to the
Gaussian-like connectivity distribution. Network coarse-
grain technique �33� can provide a quantitative method to
coarse grain the phase space.

In particular, phase-space studies can cast lights on the
highly controversial Tsallis nonextensive entropy �34,35�,
which is based on the assumption that nonequilibrium or
long-ranged interacting systems have fractal phase spaces
�34�. However, a real example to support this assumption
was not available before. Since stacks of cubes or spheres
have self-repeating patterns on various length scales in real
space, their phase spaces might also be fractals. By applying
the fractal analysis of complex network �32�, we observed
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that all the phase-space networks studied in this paper are
fractals �36�. Indeed, geometrical frustrated ground states
share the same features as the long-range interacting systems
typically discussed in the context of Tsallis entropy. One ex-
ample is the boundary effects, percolating through the entire
system, so that the system is not uniform at the infinite-size
limit �16,22� �i.e., cannot be called as thermodynamic limit�
and cannot be viewed as a simple sum of its subsystems �i.e.,
nonextensive�. On the other hand, the frustrated spin models
are still ergodic because different nodes have different stay-
ing times. This is different from the systems discussed in the
nonextensive entropy, which are usually nonergodic.

Phase-space structures are important for understanding
the dynamics. However, they are usually too large and com-
plicated so that quantitative analysis is hard. This paper only
made another step toward this direction. Future research

could provide more insights to other physical properties and
reveal more general features about phase spaces of different
systems at different temperatures. In fact, the phase-space
networks can be similarly constructed for quasicrystals �22�
with phason flips and for some other frustrated spin models
with basic flips such as triangular and kagomé ices, antifer-
romagnets in 2D kagomé, and 3D pyrochlore lattices
�1,15,37,38�. At finite temperatures, phase-space networks
can be similarly constructed. The nodes are all configurations
on the hypersurface in the phase space determined by the
conservation laws, and the edges are the motions of basic
flips and diffusion of thermal excitations.
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